United States Patent

US009477780B2

(12) (10) Patent No.: US 9,477,780 B2
Cohen et al. 45) Date of Patent: Oct. 25,2016
(54) TARGET TREE GENERATION 2004/0093342 Al 5/2004 Arbo et al.
2007/0226085 Al 9/2007 Roach et al.
. . 2008/0222171 Al 9/2008 Charters
(71) Applicant: Hewlett-Packard Development 2009/0144319 Al* 6/2009 Panwar et al. w..o.ooo...... 707/102
Company, L.P., Houston, TX (US) 2010/0115100 Al* 52010 Tubman GOGF 17/30545
709/227
(72) Inventors: Ben Cohen, Jerusalem (IL); Gil 2010/0169860 Al* 7/2010 Biazetti HO4L 41/0806
. . s : . 717/107
Tzadikevitch, Rishon Leziyon (IL); 2010/0191555 AL* 7/2010 Shmul ccooccorrrrrrr... GO6Q 10/06
Hadas Avraham, Modiin (IL) 717/104
2011/0307290 A1 12/2011 Rolia et al.
(73) Assignee: Hewlett Packard Enterprise 2012/0030220 A1 2/2012 Edwards et al.
Development LP, Houston, TX (US) 2012/0079502 A1* 3/2012 Kwan ef al. oo 718/106
’ ’ 2012/0102075 Al 4/2012 Breh et al.
. 2012/0233182 Al 9/2012 Baudel et al.
(*) Notice: Subject. to any dlsclalmer,. the term of this 2013/0006935 AL* 1/2013 Grisby ... 07/635
patent is extended or adjusted under 35 2014/0019597 A1* 1/2014 Nath et al. ccoocoovcvcerer 709/220
U.S.C. 154(b) by 288 days.
(21) Appl. No.: 13/660,422 OTHER PUBLICATIONS
) Cowan, B.A., “A Tree-to-tree Model for Statistical Machine Trans-
(22) Filed: Oct. 25, 2012 lation,” Retrieved from http://people.csail. mit.edu/brooke/web/pa-
pers/phd.pdf, May 23, 2008, 234 pages, Cambridge, MA, USA.
(65) Prior Publication Data Unknown., “Mapping Data with XML Data Configuration Files,”
Retrieved from http://publib.boulder.ibm.com/infocenter/rentrpt/
US 2014/0122534 Al May 1, 2014 v1rOml/index jsp?topic=%2Fcom.ibm.rational.raer.help.
doc%2Ftopics%2Ft_xdccontainer.html, Oct. 2012, 1 page.
(51) Int. CL
GO6F 17/30 (2006.01) * cited by examiner
(52) US. CL
CPC o GOG6F 17/30961 (2013.01) Primary Examiner — Etienne Leroux
(58) Field of Classification Search Assistant Examiner — Cindy Nguyen
CPC ...cceecveinn GO6F 17/30563; GOGF 17/30961 (74) Attorney, Agent, or Firm — Brooks, Cameron &
USPC i 707/600-603 Huebsch, PLLC
See application file for complete search history.
57 ABSTRACT
(56) References Cited Target tree generation can include constructing a mapping
U.S. PATENT DOCUMENTS file comprising a definition of a target tree agd generating the
target tree using source data and the mapping file.
7,519,606 B2 4/2009 Hernandez-Sherrington et al.

8,214,372 B2 7/2012 Gupta et al.

18 Claims, 3 Drawing Sheets

100

¥

CONSTRUCTING A MAPPING FILE COMPRISING A
DEFINITION OF ATARGET TREE

~-102

GENERATING THE TARGET TREE USING SOURCE DATAAND
THE MAPPING FILE

104

U.S. Patent Oct. 25, 2016 Sheet 1 of 3 US 9,477,780 B2

CONSTRUCTING A MAPPING FILE COMPRISINGA |_yg0
DEFINITION OF ATARGET TREE

GENERATING THE TARGET TREE USING SOURCE DATAAND | 404
THE MAPPING FILE

Fig. 1

US 9,477,780 B2

Sheet 2 of 3

Oct. 25, 2016

U.S. Patent

LN (Y0

CEC~1 FOOWAY || | NOISNILXInY

¢

08d~ SHNIYNAY ec

8fi~ CONYHEAY |7

GgZ~ THAoWRY |

bei~ LASSVAY

022~ OFIO4 L0

% S

e

BLE~

HALNdWNOOIY

Q\m\\m

Quvod
THYMOHYH

SSIHAAY di

U.S. Patent Oct. 25, 2016 Sheet 3 of 3 US 9,477,780 B2
;- 340
342 244
¢ ;
PROCESSING MEMORY
RESOURCE RESOURCE
346~
MACHINE READABLE MEDIUM | 348
350~ RECEIVING MODULE
3691~ DETERMINING MODULE
354~ INFUT MODULE
356-L~| GENERATING MODULE

Fig. 3

US 9,477,780 B2

1
TARGET TREE GENERATION

BACKGROUND

A configuration management database (CMDB) can be a
repository of information relating to components of an
information system (e.g., combination of information tech-
nology devices and computing devices, etc.). The CMDB
can include a plurality of configuration items (CI) (e.g.,
requirement documents, software, models, plans, etc.). The
CMDRB can store records (e.g., metadata, data, etc.) that
include relationships between the plurality of Cls.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flow chart of an example method for
target tree generation according to the present disclosure.

FIG. 2 illustrates a diagram for an example target tree
generation according to the present disclosure.

FIG. 3 illustrates a diagram of an example computing
device according to the present disclosure.

DETAILED DESCRIPTION

Configuration management databases (CMDBs) can
include a plurality of configuration items (CI) that can be
organized as nodes in a CMDB data tree. For example, each
CI can be represented by a node in the CMDB data tree. The
CMDRB data tree can show a relationship between connected
CIs. For example, the CMDB data tree can show how the
CIs are interconnected and/or how the Cls are dependent on
other CIs. The data represented in the CMDB data tree can
be used to generate a target data tree (e.g., a data tree in a
format different from the CMDB data tree, etc.). For
example, data relating to each CI can be input into a
mapping file to generate a data tree with definitions of a
target system. The target data tree that is generated can be
utilized by the target system.

In the following detailed description of the present dis-
closure, reference is made to the accompanying drawings
that form a part hereof, and in which is shown by way of
illustration how examples of the disclosure can be practiced.
These examples are described in sufficient detail to enable
those of ordinary skill in the art to practice the examples of
this disclosure, and it is to be understood that other examples
can be utilized and that process, electrical, and/or structural
changes can be made without departing from the scope of
the present disclosure.

As used herein, “a” or “a number of” something can refer
to one or more such things. For example, “a number of
nodes” can refer to one or more nodes.

FIG. 1 illustrates flow chart of an example method 100 for
target tree generation according to the present disclosure.
Method 100 can be used to convert source data from a first
data tree and generate a second data tree that can be used by
a second device. For example, the source data can be data
from a CMDB (e.g., universal configuration management
database, etc.) that can be converted to a target data tree.

At 102, a mapping file comprising a definition of a target
tree is constructed. Constructing a mapping file can include
executing instructions stored in memory to create definitions
associated with one or more target trees that can be used with
a particular target system. The target system can include, for
example, a set of hardware, software and/or firmware to be
used in a particular organization, business and/or other
environment.

15

20

25

30

35

40

45

55

2

The definition can include a tree structure with a number
of attributes and/or variables that can be utilized by the
target system. For example, the definition of the target tree
can include: a definition of the structure of the target tree, a
number of attributes for each node within the target tree,
and/or a number of variables for each node within the target
tree.

The definition can include a structure type of the target
tree. The structure type of the target tree can be various types
of data tree structures. For example the target tree structure
can be a rooted tree structure (e.g., tree with a root node, all
nodes within the tree dependent on a single root node, etc.).

The structure type of the target tree can include the type
of'tree structure as well as specific features of the type of tree
structure. For example, the specific features of the type of
tree structure of the target tree can include a root node with
two child nodes wherein each of the two child nodes also has
a child node.

The definition can include a number of attributes (e.g.,
characteristics, qualities, etc.) for each node within the target
tree. The number of attributes can include a name of the
node (e.g., target CI type name, etc.). The name of the node
can be used to identify each node within the target tree. For
example, the attributes of the root node can be a description
of'a CI (e.g., computing device, software program, etc.). In
this example, the attributes of the child nodes can be a
number of features of the CI. The number of child nodes can
be a number of features of the parent nodes. For example, if
the parent node is a CI, then the child nodes can include
features such as, serial number of the CI, model of the CI,
brand of the CI, nature of the CI, bar code of the CI, among
other features.

The number of attributes can also include a data type (e.g.,
string, etc.). The data type can describe a particular type of
data that can be utilized for a particular node in the target
tree. For example, the root node can include a data type of
string data. In this example, data from the source tree that is
in the data type of string data can be retrieved from the
source tree that relates to one of the number of attributes
and/or variables of the root node.

The definition can also include a number of variables. The
number of variables can be utilized to determine a value for
each node based on the source tree. The number of variables
can be unknown values that are retrieved from the source
data and/or source tree. For example, the variable for a
particular node can include a number (e.g., serial number,
etc.). The variable can be used to determine a value of the
target tree node from data of the source tree. In the previous
example, the value can be the serial number of the product
represented by the root node of the target tree that is
retrieved from the source data and/or the source tree.

The definition can include a data link from the source data
to each of the nodes of the target tree. For example, the data
link can sync data from the source data to a particular node
of the target tree based on the definition. The data link can
enable access from the target tree to corresponding source
data from the source tree. The data link can also enable
access to corresponding parent nodes and corresponding
child nodes of the source tree.

At 104, the target tree is generated using source data and
the mapping file. Generating a target tree using source data
and the mapping file can include executing instructions
stored in memory to generate a target tree based on the
definitions included in the mapping file. The source data can
be organized in a source tree (e.g., source data tree, etc.). For
example, the source data can be in a first data tree that is
different than the target data tree.

US 9,477,780 B2

3

The source tree can comprise source data at each of a
number of nodes within the source tree. For example, the
source tree can include a root node that represents a CI
and/or node within an IT system. In this example, the root
node can have two child nodes. A first child node can
represent an internet protocol (IP) address and a second
child node can represent a hardware board. Each node (e.g.,
root node, child node, etc.) can include a portion of the
source data that relates to the corresponding node. For
example, the root node can include source data relating to
the CI. In this example, a first child node can include source
data relating to an IP address and the second node can
include source data relating to a hardware board of the CI.

Constructing the mapping file comprising the definition of
the target tree can include executing instructions stored in
memory to construct a number of extraction rules to extract
source data based on the attributes and variables for each of
the nodes within the target tree. For example, it can be
determined that a child node of a root node CI with an
attribute of “AmMaodel-Parent” and variables of a string data
type barcode can include source data of a barcode for the
root node device. In this example, the mapping file can
include definition instructions (e.g., modules, etc.) that
define the structure of the target tree along with attributes
and variables for each node within the structure of the target
tree. The extraction rules can define a method of extraction
within the mapping file. For example, the extraction rules
can be used to extract metadata from a CMDB (e.g.,
UCMDB, etc.).

Constructing a mapping file can enable a user to extract
data from source data (e.g., UCMDB, etc.) and organize
portions of the source data into the target tree based on the
definition of the target tree. The definition of the target tree
can be determined based on a function of a target system.
For example, the target system can utilize data that is in a
particular structure and/or includes particular attributes and
values at particular nodes within the particular structure. In
this example, the mapping file can be constructed with a
definition that matches and/or accounts for a function of the
particular structure and/or attributes and values.

By constructing a mapping file with a definition of the
target tree, a plurality of source data each comprising a
variety of data tree structures can be used to generate a
corresponding target tree (e.g., target tree that represents the
source data, etc.).

FIG. 2 illustrates a diagram 210 an example target tree
generation according to the present disclosure. Diagram 210
includes a source tree 211 that comprises source data (e.g.,
1P address, hardware board, information relating to a CI,
etc.). The source tree 211 can include source data from a
CMDB. The source data can be organized in a variety tree
structures.

The source tree 211 can include a root node 212. The root
node 212 can be a designated node from a portion of a larger
set of data. For example, the root node 212 can represent a
particular CI within a CMDB that comprises a plurality of
CIs. The root node 212 can have child nodes (e.g., child
node 214, child node 216, etc.). Each child node can include
source data relating to the root node 212. For example, child
node 214 can be IP address data relating to the root node
212. In another example, child node 216 can be hardware
board data relating to the root node 212.

25

40

45

4

The source tree 211 can be represented in a variety of
structures and the structure of a root node 212 connected to
an IP address node 214 and a hardware board node 216
should not be taken in a limiting sense. The source tree 211
can have a number of additional child nodes connected to the
root node 212 and a number of additional child nodes (not
shown) connected to the child nodes (e.g., child node 214,
child node 216, etc.).

Arrow 234 can represent generating the target tree 217. At
arrow 234, a mapping file can be used to generate the target
tree 217. The mapping file can include a definition of the
target tree 217. The definition of the target tree 217 can
include a structure type, attributes, and/or variables that
relate to the target tree 217. For example, the structure type
can include information including that node 218 is a root
node (e.g., AmComputer, etc.), node 220 (e.g., AmPortfolio,
etc.) and node 222 (e.g., AmExtension, etc.) are child nodes
of the root node 218. In another example, node 224 (e.g.,
AmAsset, etc.) and node 226 (e.g., AmModel, etc.) are
children of node 220. Furthermore, in another example,
node 228 (e.g., AmBrand, etc.), node 230 (e.g., AmNature,
etc.), and node 232 (e.g., AmModel-Parent, etc.) can be child
nodes of node 226.

The mapping file can also include a definition for attri-
butes of the target tree 217. Attributes can be information
that can be included within a particular node of the target
tree 217. For example, the root node 218 can have various
attributes such as a root IP address, a title (e.g., AmCom-
puter, etc.), among other attributes that can be defined in the
mapping file. The attributes can be defined in the mapping
file and extracted from the source tree 211. For example, the
root IP address can be an attribute of the amComputer root
node 218. In this example, the mapping file can extract
attribute information (e.g., IP address, etc.) and transfer the
extracted attribute information to the amComputer root node
218 of the target tree 217.

The mapping file can also include a definition for vari-
ables of the target tree 217. Variables can include an opera-
tionalized way that the attributes are represented for data
processing. For example, the variables can include a data
type (e.g., string data, etc.) The variables of the attributes can
be extracted from the source tree 211 to the target tree 217.
For example, the root IP address can be the attribute of node
214 and extracted from the source tree 211 and transferred
to the AmComputer root node 218 of the target tree as string
data. That is, the mapping file can include a definition of
each attribute of the target tree 217 with a variable definition
to define the operationalized way each attribute is repre-
sented within the target tree 217.

The variables can be represented as a value in a corre-
sponding node of the target tree 217 based on the extracted
data from the source tree 211. For example, if the attributes
for AmAsset node 224 is a particular serial number, and the
variable of the attributes for AmAsset is string data, then the
value can be represented as extracted string data of the
particular serial number. The extracted string data from the
source tree 211 can be included in the generated target tree
217 at the AmAsset node 224.

An example mapping file can include Example 1 below:

<target_ ci_ type name="amComputer">
<variable name="vComputerName" datatype="STRING" value="Root[
‘name’]"/>

US 9,477,780 B2

5

-continued

<target_ mapping name="TcpipAddress" datatype="STRING"
value="AMPushFunctions.getipAddress (Root.ip __address*. getAt (‘name’)) "/>
<target_ mapping name=" TcpipHostName” datatype="STRING"
value="vComputerName'/>
<target_ ci_ type name="amPortfolio">
<target mapping name="CMBId" datatype="STRING"
value="globalld"/>
<target_ ci_ type name="amAsset'">
<target__mapping name="SerialNo" datatype="STRING"
value="vSerialNo"/>
</target_ci_type>
<target__ ci type name="amModel ">
<target_ mapping name="Name" datatype="STRING" Ignore-
on-null="false" value="Root['node__model’)"/>
<target_ ci_ type name="amBrand">
<target_ mapping name="Name” datatype="STRI NG”
value="AMPushPunctions.getBrandName(Root ‘vendor’], Root[
‘discovered__vendor])” />
</target_ci_ type>
<target ci_type name="amNature">
<target_ mapping name="Code" datatype="STRING"
value="AMPushFunctions.getNatureCode(i IsComputerAVM)"/>
</target_ci_ type>
< tarqet _ci type name="amModel-Parent”>
<target_ mapping name="BarCode" data type
="STRING" value= “Root[‘node_ role’]”/>
</target_ ci_ type>
</target_ ci_ type>
</target_ ci_ type>
<for-each source-ci count-index="1" source-cis= "Root.Hardware Board'>
<target_ ci_ type name="amExtensionCard">
<target_ mapping name="CardiD" datatype="STRING"
value="Root.Hardware_ Board[i] ['vendor_card_id"]"/>
<target mapping name="Name" datatype="STRING"
value="AMPushFunctions.getCardName (Root.Hardware_ Board[i] ['name']) "/>
< target _ci_type name="amVendor" >
<target mapping name="Name" datatype ="STRING"
value="AMPushFunctions.getCard VendorName(Root. Hardware_ Board[i]
['vendor'))"/>
</target_ ci_ type>
</target ci type>
</for-each-source-ci>

Example 1
40

Example 1 can represent an example mapping file that can
generate the target tree 217 based on extracted source data
from the source tree 211. Example 1 provides an example of
how the mapping file can extract attributes and variables in
the form of a value based on the source tree 211.

The mapping file in Example 1 can extract a particular
attribute of the root element (e.g., Root[“attr’]) of the source
tree 211 (e.g., root node 212, etc.). For example, value="root
[‘name’]” can be used to extract the name of the root
element AmComputer from the source tree 211 and return
the name to the target tree 217 at root node 218.

The mapping file in Example 1 can execute to extract a
topology query language (TQL) result list of the CI
instances named in a particular query element linked to the
root node 212 (e.g., Root.Query_Flement_Name). For
example, root.query_element_name[2][‘attr’] can return a
value of the attribute named ‘attr” of the 3" CI in the TQL
result named ‘Query_Element_Name’ that is linked to the
current root CI (e.g., root node 212, etc.).

The mapping file in Example 1 can execute to extract a list
of attributes of the Cls instances named in the TQL result list
and can be linked to the current root node 218. For example,
root.query_element_name*.getat(“attr’) can return the list of
attributes of the defined ‘attr’ of the linked CIs to the root CI
(e.g., root node 218, etc.) which returned in the TQL result
as ‘query_clement_name’ (e.g., root node 218, etc.).

45

50

55

60

65

The mapping file in Example 1 can execute to use the root
node (e.g., root node 218) as a starting point that enables
access to other elements in the source tree 211. That is, the
mapping file can use a traveling technique over the root
node. In one example, the traveling technique can include a
groovy traveler (e.g., a traveler that utilizes “groovy” tech-
nique, etc.).

In the mapping file in Example 1 can execute to the source
data from the source tree 211 can be searched by the source
data’s relationship to the root node 212. The mapping file in
Example 1 can be modified to include any number of
attributes and variables to generate a target tree that com-
prises a particular structure with particular values at each
node within the particular structure. That is, the source tree
211 can be used to generate a variety of different target trees
(e.g., target tree 217, etc.).

By constructing a mapping file with the definition of a
target tree a variety of source trees can be used to generate
a variety of target trees. For example, if the structure,
attributes, variables, and values as described herein are
known for a particular target tree, the mapping file can be
constructed as described herein to generate the particular
target tree. In another example, CMDB (e.g., universal
configuration management database (UCMDB), etc.) data
models can be used to generate a variety of other data
models which can enable integration between transferring
UCMDRB data and a variety of other products (e.g., devices,
programs, etc.).

US 9,477,780 B2

7

FIG. 3 illustrates a diagram of an example computing
device 340 according to the present disclosure. The com-
puting device 340 can utilize software, hardware, firmware,
and/or logic to provide a simulated network including a
number of network parameters.

The computing device 340 can be any combination of
hardware and program instructions configured to target tree
generation. The hardware, for example can include one or
more processing resources 342, machine readable medium
(MRM) 348 (e.g., computer readable medium (CRM), data-
base, etc.). The program instructions (e.g., computer-read-
able instructions (CRI) 349) can include instructions stored
on the MRM 348 and executable by the processing resources
342 to implement a desired function (e.g., receive a source
tree, determine a mapping file for a target tree, input
extensible markup language data of the source tree into the
mapping file, generate the target tree, etc.).

MRM 348 can be in communication with a number of
processing resources of more or fewer than processing
resources 342. The processing resources 342 can be in
communication with a tangible non-transitory MRM 348
storing a set of CRI 349 executable by the processing
resources 342, as described herein. The CRI 349 can also be
stored in remote memory managed by a server and represent
an installation package that can be downloaded, installed,
and executed. The computing device 340 can include
memory resources 344, and the processing resources 342
can be coupled to the memory resources 342.

Processing resources 342 can execute CRI 349 that can be
stored on an internal or external non-transitory MRM 348.
The processing resources 342 can execute CRI 349 to
perform various functions, including the functions described
in FIG. 1 and FIG. 2. For example, the processing resources
342 can execute CRI 349 to generate the target tree using
source data and the mapping file.

The CRI 349 can include a number of modules 350, 352,
354, 356. The number of modules 350, 352, 354, 356 can
include CRI that when executed by the processing resources
342 can perform a number of functions.

The number of modules 350, 352, 354, 356 can be
sub-modules of other modules. For example, the input
module 354 and the generating module 356 can be sub-
modules and/or contained within the same computing device
(e.g., computing device 340). In another example, the num-
ber of modules 350, 352, 354, 356 can comprise individual
modules on separate and distinct computing devices.

A receiving module 350 can include CRI that when
executed by the processing resources 342 can perform a
number of receiving functions. The receiving module 350
can execute instructions to receive a source tree that includes
source data. For example, instructions associated with the
receiving module 350 can be executed to receive a UCMDB
data tree can be received by the receiving module and use
the UCMDRB data as a source tree.

A determining module 352 can include CRI that when
executed by the processing resources 342 can perform a
number of determination functions. The determining module
352 can determine a mapping file for a target tree that
includes a definition of the target tree. For example, instruc-
tions associated with the determining module 352 can be
executed to determine a target tree to generate from the
received source tree. The determining module can determine
a particular target tree and construct a mapping file that
includes a definition of the particular target tree.

An input module 354 can include CRI that when executed
by the processing resources 342 can perform a number of
inputting functions. The input module 354 can be executed

20

25

30

35

40

45

8

to input extensible markup language (xml) data of the source
tree data into the constructed mapping file to generate the
target tree. The input module 354 can be executed to use the
received source tree and use the source data of the source
tree as an input for the mapping file.

A generating module 356 can include CRI that when
executed by the processing resources 342 can perform a
number of generating target tree functions. The generating
module 356 can be executed to use the definitions of the
mapping file and the inputted source data to generate a target
tree that comprises the defined attributes and variables of the
mapping file along with the resulting values extracted from
the source tree. For example, instructions associated with the
mapping module 350 can be executed to include a definition
of attributes and variables for each node of a target tree. Data
can be inputted to the mapping file from the source tree, and
based on the attributes and variables, values can be deter-
mined for each node that fulfills the defined attributes and
variables and generates a target tree that is defined by the
mapping file.

A non-transitory MRM 348, as used herein, can include
volatile and/or non-volatile memory. Volatile memory can
include memory that depends upon power to store informa-
tion, such as various types of dynamic random access
memory (DRAM), among others. Non-volatile memory can
include memory that does not depend upon power to store
information.

The non-transitory MRM 348 can be integral, or commu-
nicatively coupled, to a computing device, in a wired and/or
a wireless manner. For example, the non-transitory MRM
348 can be an internal memory, a portable memory, a
portable disk, or a memory associated with another com-
puting resource (e.g., enabling CRIs to be transferred and/or
executed across a network such as the Internet).

The MRM 348 can be in communication with the pro-
cessing resources 342 via a communication path 346. The
communication path 346 can be local or remote to a machine
(e.g., a computer) associated with the processing resources
342. Examples of a local communication path 346 can
include an electronic bus internal to a machine (e.g., a
computer) where the MRM 348 is one of volatile, non-
volatile, fixed, and/or removable storage medium in com-
munication with the processing resources 342 via the elec-
tronic bus.

The communication path 346 can be such that the MRM
348 is remote from the processing resources (e.g., 342), such
as in a network connection between the MRM 348 and the
processing resources (e.g., 342). That is, the communication
path 346 can be a network connection. Examples of such a
network connection can include a local area network (LAN),
wide area network (WAN), personal area network (PAN),
and the Internet, among others. In such examples, the MRM
348 can be associated with a first computing device and the
processing resources 342 can be associated with a second
computing device (e.g., a Java® server). For example, a
processing resource 342 can be in communication with a
MRM 348, wherein the MRM 348 includes a set of instruc-
tions and wherein the processing resource 342 is designed to
carry out the set of instructions.

The processing resources 342 coupled to the memory
resources 344 can execute CRI 349 to receive a source tree
comprising configuration management database (CMDB)
data. The processing resources 342 coupled to the memory
resources 344 can also execute CRI 349 to determine a
mapping file for a target tree that comprises a definition of
the target tree. The processing resources 342 coupled to the
memory resources 344 can also execute CRI 349 to input

US 9,477,780 B2

9

extensible markup language (xml) data of the source tree
into the mapping file. Furthermore, the processing resources
342 coupled to the memory resources 344 can execute CRI
349 to generate the target tree based on the mapping file and
the xml data of the source tree.

As used herein, “logic” is an alternative or additional
processing resource to execute the actions and/or functions,
etc., described herein, which includes hardware (e.g., vari-
ous forms of transistor logic, application specific integrated
circuits (ASICs), etc.), as opposed to computer executable
instructions (e.g., software, firmware, etc.) stored in memory
and executable by a processor.

The specification examples provide a description of the
applications and use of the system and method of the present
disclosure. Since many examples can be made without
departing from the spirit and scope of the system and method
of'the present disclosure, this specification sets forth some of
the many possible example configurations and implementa-
tions.

What is claimed:

1. A method for target tree generation, comprising:

utilizing a processor to execute instructions located on a

non-transitory medium for:

receiving a source tree including source data;

constructing a mapping file comprising a definition of
a target tree, wherein the definition includes a struc-
ture of the target tree, the structure of the target tree
is a rooted tree structure, and wherein the mapping
file includes at least one variable for each of a
plurality of nodes of the target tree; and

generating the target tree using source data and the
mapping file utilizing a traveling technique with a
root node of the source tree as a starting point to
access other nodes in the source tree, including:

extracting a topology query language (TQL) result list
of configuration item (CI) instances linked to the root
node of the source tree; and

extracting a list of attributes of the CI instances
extracted from the TQL result list.

2. The method of claim 1, wherein generating the target
tree includes inserting a number of variables from the source
data into each node of the target tree.

3. The method of claim 1, wherein generating the target
tree includes inserting a number of attributes from the source
data into each node of the target tree.

4. The method of claim 1, comprising creating a data link
from the source data to sync with each node of the target
tree.

5. The method of claim 4, wherein creating the data link
from the source data is based on the definition of the
mapping file.

6. The method of claim 5, comprising accessing a corre-
sponding parent node and a corresponding child node via the
data link.

7. The method of claim 1, wherein the at least one variable
has an unknown value.

8. The method of claim 7, comprising retrieving a value
for the at least one variable from the source data.

9. The method of claim 1, wherein constructing the
mapping file comprising the definition of the target tree
includes:

defining each of a plurality of attributes of the target tree;

determining a definition of the at least one variable

corresponding to at least one of the plurality of attri-
butes; and

determining how each of the plurality of attributes is

represented within the target tree.

5

10

15

20

25

30

35

40

50

55

60

65

10

10. The method of claim 1, wherein the at least one
variable includes string type data.

11. A non-transitory machine-readable medium storing a
set of instructions executable by a processor to cause a
computer to:

receive a mapping file comprising a definition for a target

tree, wherein the mapping file includes at least one
variable for each of a plurality of nodes of the target
tree, and wherein the definition includes a structure of
the target tree, the structure of the target tree is a rooted
tree structure;

access source data of a source tree into the mapping file,

wherein the source data includes configuration item

(CI) instances of a configuration management database

(CMDB); and

generate the target tree using the mapping file and the

source data utilizing a traveling technique with a root

node of the source tree as a starting point to access

other nodes in the source tree, including:

extracting a topology query language (TQL) result list
of the CI instances named in a particular query
element linked to the root node of the source tree;
and

extracting a list of attributes of the CI instances
extracted from the TQL result list.

12. The medium of claim 11, wherein the target tree
includes a number of nodes that each includes a portion of
the source data.

13. The medium of claim 12, wherein the portion of the
source data corresponds to a particular node of the number
of nodes within the target tree.

14. The medium of claim 12, wherein each of the number
of' nodes includes a link to a corresponding parent node and
a corresponding child node.

15. A system for target tree generation, the system com-
prising a processing resource in communication with a
non-transitory machine readable medium, wherein the non-
transitory machine readable medium includes a set of
instructions and wherein the processing resource is designed
to carry out the set of instructions to:

receive a source tree comprising configuration manage-

ment database (CMDB) data;

determine a mapping file for a target tree that comprises

a definition of the target tree, wherein the mapping file
includes at least one variable for each of a plurality of
nodes of the target tree, and wherein the definition
includes a structure of the target tree, the structure is a
rooted tree structure; and

generate the target tree using the mapping file and the

source tree utilizing a traveling technique with a root

node of the source tree as a starting point to access

other nodes in the source tree, including:

extracting a topology query language (TQL) result list
of configuration item (CI) instances linked to the root
node of the source tree; and

extracting a list of attributes of the CI instances
extracted from the TQL result list.

16. The computing system of claim 15, wherein the target
tree can access the CMDB data via a link at each of a number
of nodes within the target tree.

17. The computing system of claim 15, wherein the
definition of the target tree includes a number of attributes
and a number of variables that are particular to a target
system.

US 9,477,780 B2
11

18. The computing system of claim 15, wherein the
definition includes extraction rules to extract metadata from
the CMDB data.

12

